(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(h(x)) →+ h(minus(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / h(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus
(8) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
h(
x)) →
h(
minus(
x))
minus(
f(
x,
y)) →
f(
minus(
y),
minus(
x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))
The following defined symbols remain to be analysed:
minus
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(10) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
h(
x)) →
h(
minus(
x))
minus(
f(
x,
y)) →
f(
minus(
y),
minus(
x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))
No more defined symbols left to analyse.